

- ★ Two figures are congruent if one shape lies exactly on top of the other after one or more transformations (translation, reflection, rotation).
- ★ Solve problems using properties of congruent figures, justifying reasoning and making generalisations.
- ★ The minimal conditions for congruence (SSS, SAS, ASA and RHS) and the conditions that do not prescribe congruence (ASS, AAA).
- ★ Plot the vertices of two-dimensional shapes on the Cartesian plane, translating, rotating or reflecting the shape and using coordinates to describe the transformation.

A TASK

The entrance to the libray is to be tiled. Design a tessellation that could be used to cover the floor of the entrance.

- Research tessellations using basic shapes such as squares, equilateral triangles and even circles.
- Research how MC Escher made tessellations.
- Create your own design.
- Present your design.

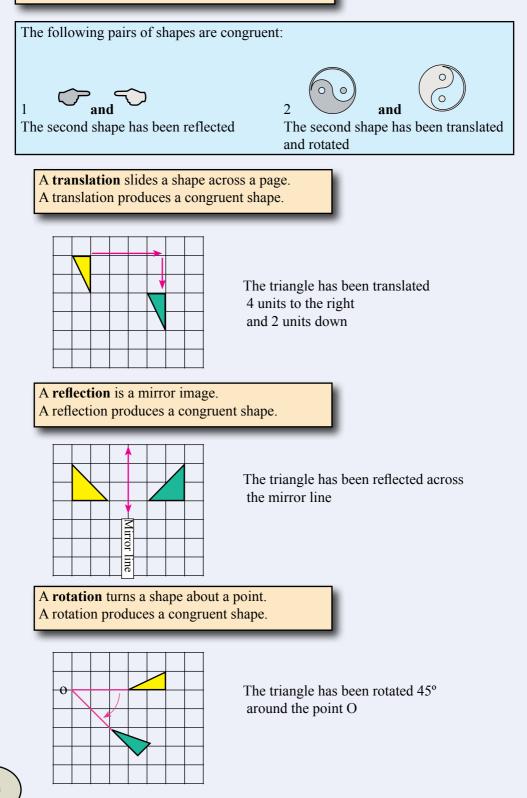
A LITTLE BIT OF HISTORY

4000 BC Sumerian tesselations.

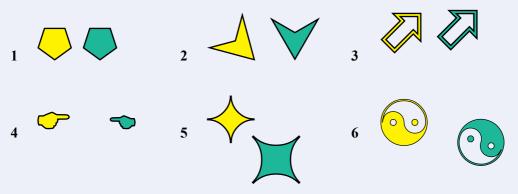
I was born

to tessellate

- 3000 BC Tessellations in the form of mosaics are used in Mesopotamia.
- 1619 Kepler wrote about regular and semiregular tessellation.
- 1891 Fedorov proved that tiling of the plane is based on 17 different groups of isometries.
- 1936 MC Escher begins to create hundreds of amazing tessellations.
- 2008 Tessellation software allows for realistic visualisation in movies and games (eg. large armies etc).

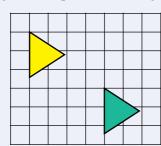

Tessellations (to pave) are everywhere in our society from ancient mosaics and architecture to modern art, floors, and quiltmaking. Tessellations also occur in nature from beehives to rock structures.

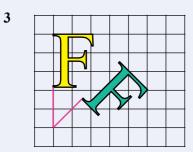
See Investigation 7.1 to make your own tessellation.

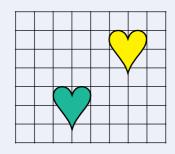


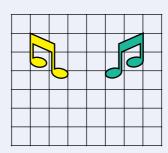
Congruent shapes have the same shape and size. They fit exactly on top of each other.

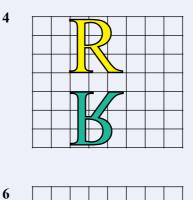
Exercise 7.1

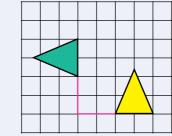

Which of the following pairs of shapes are congruent (If cut out, they should fit exactly on top of each other)?

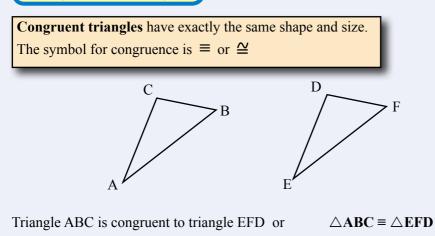



Exercise 7.2

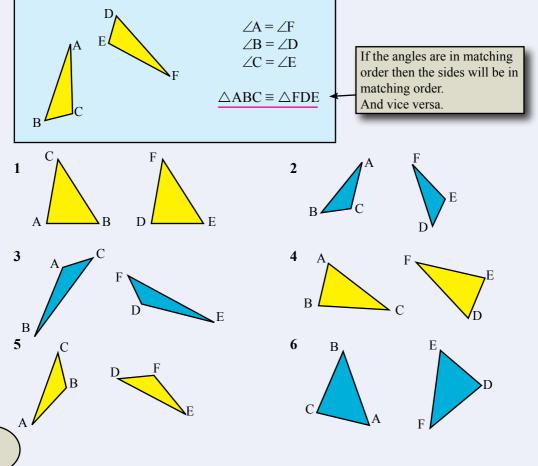

1


Describe the transformation (translation, reflection, or rotation) to produce the congruent shape from the original: 2





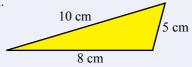
Congruent Triangles


The angles must be named in matching order:

The sides must be named in matching order:

 $\angle A = \angle E$ $\angle B = \angle F$ $\angle C = \angle D$ side AB = side EF side BC = side FD side CA = side DE

Exercise 7.3


Correctly name the congruent pair of triangles (angles and sides must match):

Tests for Congruent Triangles

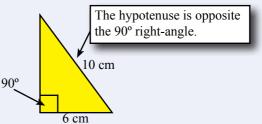
Activity: The SSS test - If the three sides match are they congruent?

- 1. Draw a triangle with sides of 5 cm, 8 cm, and 10 cm.
- 2. Match your triangle with other people in the classroom who have also drawn a triangle with sides of 5 cm, 8 cm, and 10 cm.
- 3. Are the triangles congruent?

Activity: The AAA test - If the three angles match are they congruent?

- 1. Draw a triangle with angles of 60°, 20°, and 100°.
- 2. Match your triangle with other people in the classroom who have also drawn a triangle with angles of 60°, 20°, and 100°.
- 3. Are the triangles congruent?

Activity: The SAS test - If two sides and the angle in between the two sides match are they congruent?

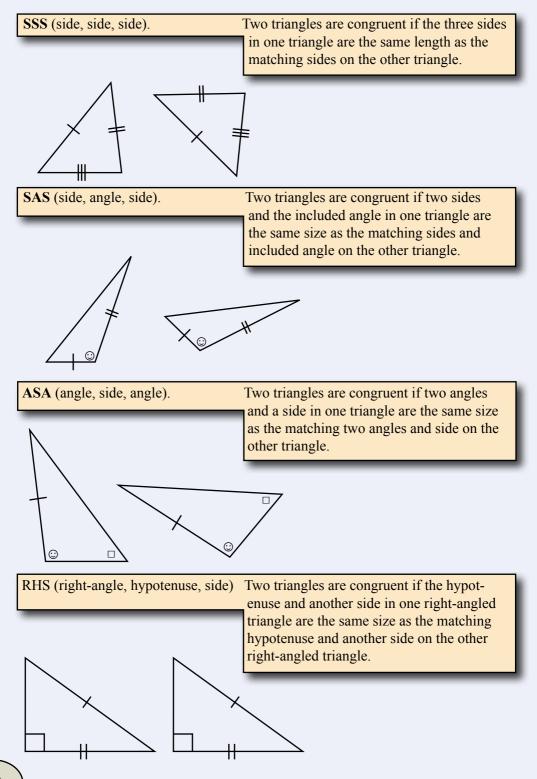

- 1. Draw a triangle with sides of 5 cm and 9 cm with the angle in between 45°.
- 2. Match your triangle with other people in the classroom who have also drawn a triangle with sides of 5 cm and 9 cm with the angle in between 45°.
- 3. Are the triangles congruent?

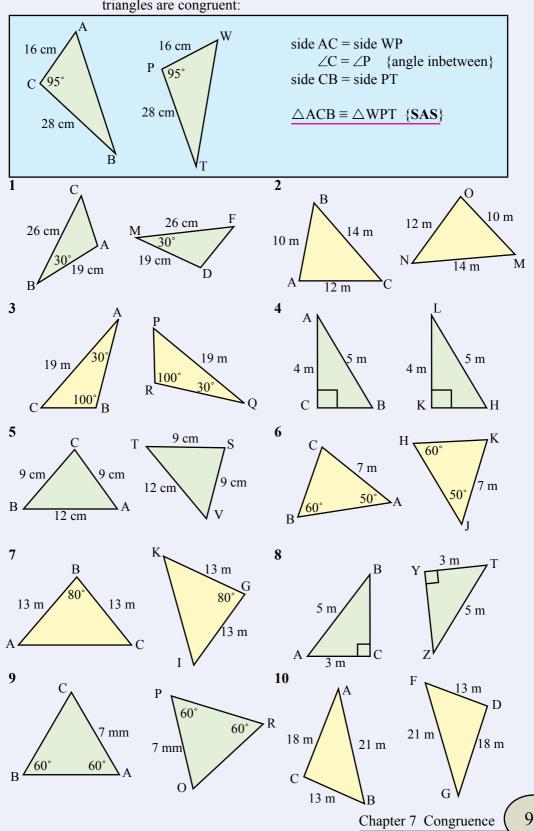
Activity: The ASA test - If two angles and a side match are they congruent?

- 1. Draw a triangle with angles of 30° and 45° and a side of 8 cm.
- 2. Match your triangle with other people in the classroom who have also drawn a triangle with angles of 30° and 45° and a side of 8 cm.
- 3. Are the triangles congruent?

Activity: The RHS test - If a right-angle, the hypotenuse and another side match are they congruent?

- 1. Draw a triangle with a right-angle (90°), a hypotenuse of 10 cm, and another side of 6 cm.
- 2. Match your triangle with others who have also drawn a triangle with a right-angle (90°) a hypotenuse of 10 cm, and another side of 6 cm.
- 3. Are the triangles congruent?


9 cm


5 cm

45°

Tests for Congruent Triangles

The activities on the previous page lead to four conditions that each provide a test of whether two triangles are congruent:

Exercise 7.4 Use the tests for congruence to test whether the following pairs of triangles are congruent:

Transformations

Exercise 7.5

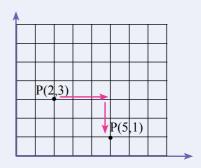
What are the new coordinates of P(2,3) after P is translated 3 units right and 2 units down?

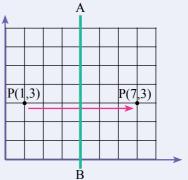
= P(2+3,3-2)= P(5,1)

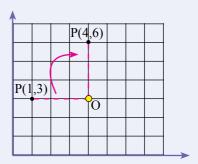
- 1 What are the new coordinates of P(1,4) after P is translated 2 units right and 2 units down?
- 2 What are the new coordinates of P(2,3) after P is translated 4 units right and 1 unit down?
- **3** What are the new coordinates of P(5,4) after P is translated 3 units left and 2 units up?

What are the new coordinates of P(1,3) after P is reflected in the line AB?

= P(1+2x3,3)= P(7,3)


- 4 What are the new coordinates of P(1,4) after P is reflected in the line AB?
- 5 What are the new coordinates of P(1,2) after P is reflected in the line AB?
- 6 What are the new coordinates of P(2,4) after P is reflected in the line AB?


What are the new coordinates of P(1,3) after P is rotated 90° clockwise about the point O?


= P(4,6)

{Plot the points to work out what the new coordinates will be.}

- 7 What are the new coordinates of P(2,3) after P is rotated 90° clockwise about the point O?
- 8 What are the new coordinates of P(0,3) after P is rotated 90° clockwise about the point O?
- **9** What are the new coordinates of P(1,3) after P is rotated 90° anti-clockwise about the point O?

Mental Computation

Exercise 7.6

- 1 Spell transformation.
- 2 Change 0.3 to a fraction.
- 3 Change $\frac{2}{5}$ to a decimal.
- 4 Translate P(2,3) 2 units to the right and 4 units up.
- **5** ⁻5 + 3
- 6 Change $\frac{8}{5}$ to a mixed numeral.
- 7 Simplify: 6b 4b.
- 8 What are the four tests for congruent triangles?
- 9 Round 5.2641 to 2 decimal places.
- **10** Simplify: $x^5 \times x^2$

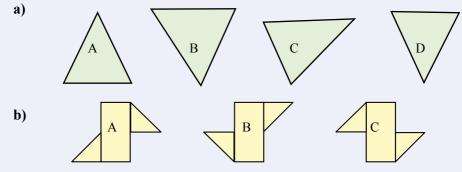
Exercise 7.7

- 1 Spell congruent.
- 2 Change 0.5 to a fraction.
- 3 Change $\frac{1}{4}$ to a decimal.
- 4 Translate P(1,3) 3 units to the right and 2 units down.
- **5** ⁻2 + 3
- 6 Change $1\frac{2}{3}$ to an improper fraction.
- 7 Simplify: 3x + 2x.
- 8 What are the four tests for congruent triangles?
- **9** Round 6.3475 to 2 decimal places.
- 10 Simplify: $x^3 \times x^4$

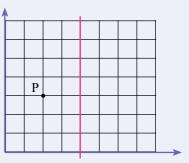
Exercise 7.8

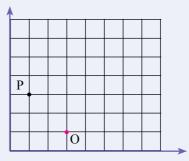
- 1 Spell reflection.
- **2** Change 0.25 to a fraction.
- 3 Change $\frac{3}{4}$ to a decimal.
- 4 Translate P(5,3) 3 units to the left and 1 unit down.
- **5** ⁻4 + 6
- 6 Change $\frac{7}{3}$ to an improper fraction.
- 7 Simplify: 5c 2c.
- 8 What are the four tests for congruent triangles?
- 9 Round 9.2173 to 2 decimal places.
- **10** Simplify: $x^2 \times x^4$

You need to be a good mental athlete because many everyday problems are solved mentally.


Tomorrow is often the busiest day of the week - Spanish Proverb.

Exercise 7.9


1 Which pair of the following shapes are congruent?

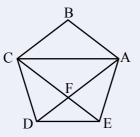

2 The point P(2,5) is translated 3 units down and 4 units to the right. What are the new coordinates of point P?

<u>ا</u>		 			
	Р				
		 	 	 	\rightarrow

3 The point P(2,3) is reflected in the mirror (the red line). What are the new coordinates of point P?

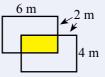
4 The point P(1,3) is rotated 90 clockwise about O. What are the new coordinates of point P?

5 SSS, SAS, AAS, and RHS are tests for congruent triangles. What would be the test for congruent circles? **Competition Questions**

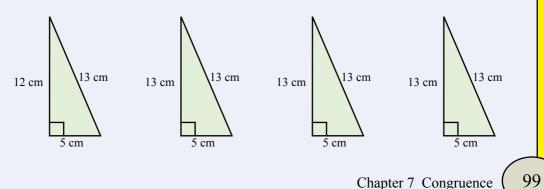

Prepare for mathematics competitions and build maths muscle at the same time.

Exercise 7.10

- 1 Divide the regular hexagon, all sides equal, into:
 - 2 congruent shapes
 - 3 congruent shapes
 - 4 congruent shapes
 - 6 congruent shapes
- 2 Can you use a single straight line to divide each of the following letters into two congruent shapes?


ABCDEF

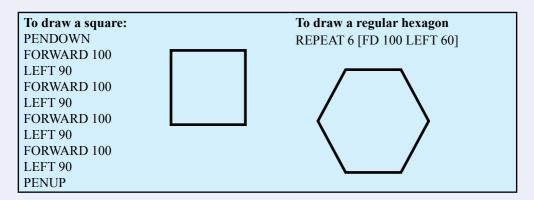
- **3** Does the diagonal divide the rectangle, the parallelogram, the rhombus, and the kite into two congruent shapes?
- 4 What does the letter F look like after being reflected in a mirror?
- 5 Name three pairs of congruent triangles in the regular pentagon below:



The statement below is true. The statement above is false.

6 What is the area of the intersection of the two congruent rectangles?

7 Rearrange the four congruent triangles to form a square with a hollow square in the middle. What is the area of the middle square?

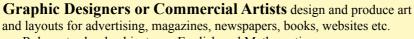

Technology 7.1 Tessellations

There are numerous tessellation activities and games on the Internet. Experiment with some of these activities.

Technology 7.2 Tessellations with LOGO

LOGO is a computer programming language created in 1967 for educational use.

- \checkmark LOGO is essentially a turtle with a pen on the monitor.
- $^{\circ}$ The turtle will draw geometric shapes when given movement commands.
- The LOGO programming language is a powerful programming language.
- ⁽¹⁾ LOGO is considered an ideal introduction to computer programming.

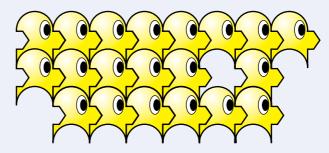


There are a number of free LOGO applications on the Internet and many tutorials, even including tutorials on LOGO and tessellations.

After just a short time learning the language you will be able to start making tessellations with LOGO.

Technology 7.3 Tessellation with other software

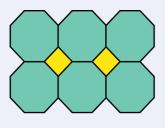
- a) 'Kali' allows you to draw some wonderful tessellations.
- **b)** 'Tess' also allows you to draw some wonderful tessellations as demonstrated on their website.
- c) 'Tessellation Exploration' all kinds of transformations of basic shapes.
- d) 'Tessellate' an online Javascript tessellation activity.

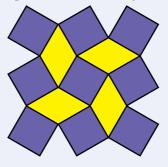

- Relevant school subjects are English and Mathematics.
- Courses range from Diploma, to Advanced Diplomas, and University Degrees.

Investigation 7.1 Make your own tessellation

Tessellations are about designing congruent shapes that fill a space without gaps or overlapping. Tessellations may be formed by joining translated, reflected, and rotated congruent shapes.

The square is a basic shape that will tessellate:

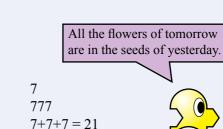

- 1 Select a shape that will tessellate. A square is a good shape to start with.
- 2 Cut a piece from the bottom and add it to the top.
- 3 Cut a piece from the left and add it to the right.
- 4 This shape, based on a square, should now tessellate. Decorate the piece.
- 5 Make multiple copies and tessellate use a photocopier or tessellation software.


Investigation 7.2 Regular polygon tessellation

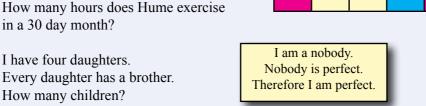
Experiment with tessellations of combinations of polygons. Try combinations of shapes such as triangles, squares, parallelograms, pentagons, hexagons etc:

Squares and Octagons

Squares and Parallelograms



software.

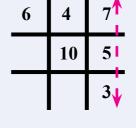

Chapter 7 Congruence (101

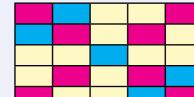
A Sweet Trick

- 1 Ask your audience to choose their favourite number from 1 to 9.
- 2 Write the number three times.
- 3 Sum the digits of the number.
- 4 Multiply the answer by 37

21 x 37 = 777

A is three times the age of B. In ten years time, A will be twice the age of B. 4 How old are A and B?




Odds and Evens is naughts and crosses played with the numbers.

- 2, 4, 6, 8, 10 1, 3, 5, 7, 9

1 One player uses the odd numbers, the other player uses the even numbers.

- 2 When you use a number cross it off because it can't be used more than once.
- The winner is the first to get a sum of 15 3 either horizontally, vertically, or diagonally.

in a 30 day month?

I have four daughters.

How many children?

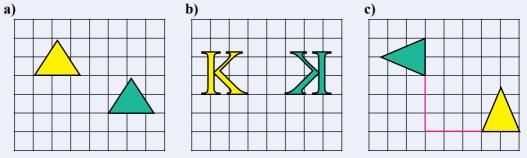
A Game

Every daughter has a brother.

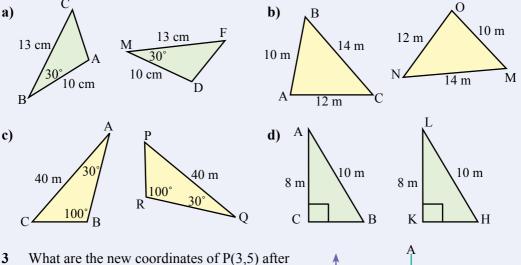
What percentage of the rug is blue? What percentage of the rug is yellow?

Hume exercises 30 mins each day.

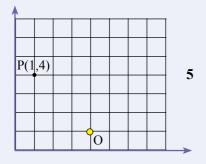
Exercise 7.11

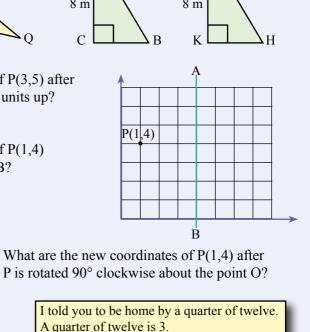

1

2


Chapter Review 1

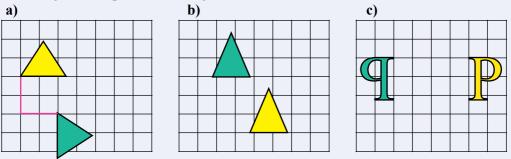
Exercise 7.12

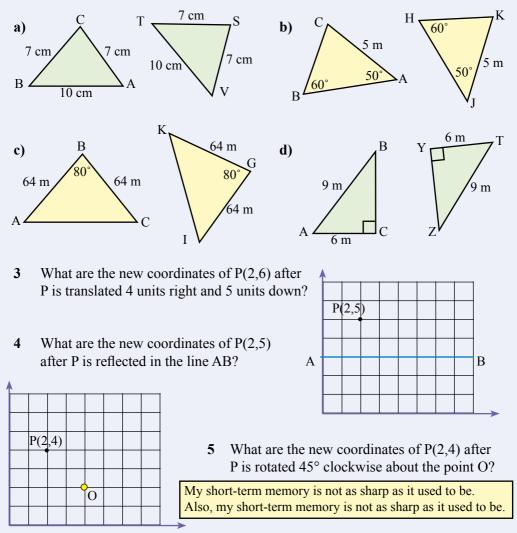

1 Describe the transformation (translation, reflection, or rotation) to produce the congruent shape from the original:



2 Use the tests for congruence to test whether the following pairs of triangles are congruent:

- **3** What are the new coordinates of P(3,5) afte P is translated 3 units left and 3 units up?
- 4 What are the new coordinates of P(1,4) after P is reflected in the line AB?




Chapter Review 2

Exercise 7.13

1 Describe the transformation (translation, reflection, or rotation) to produce the congruent shape from the original:

2 Use the tests for congruence to test whether the following pairs of triangles are congruent:

